Math Challenge 1. Prove that for every choice of real numbers $a, b, c, d>0$,

$$
\sqrt{a b}+\sqrt{b c}+\sqrt{c d}+\sqrt{d a} \leq a+b+c+d .
$$

Solution. Let x and y be two positive integers. Then $0 \leq(x-y)^{2}=x^{2}-2 x y+y^{2}$. Adding $4 x y$ to both sides of the inequality, we obtain $4 x y \leq x^{2}+2 x y+y^{2}$, which is equivalent to $4 x y \leq(x+y)^{2}$. Thus,

$$
2 \sqrt{x y} \leq x+y \text { for all positive numbers } x \text { and } y .
$$

Because $a, b, c, d>0$, we have in particular,

$$
\begin{aligned}
& 2 \sqrt{a b} \leq a+b \\
& 2 \sqrt{b c} \leq b+c \\
& 2 \sqrt{c d} \leq c+d \\
& 2 \sqrt{d a} \leq d+a .
\end{aligned}
$$

Summing the inequalities yields

$$
2 \sqrt{a b}+2 \sqrt{b c}+2 \sqrt{c d}+2 \sqrt{d a} \leq 2 a+2 b+2 c+2 d
$$

Finally, dividing both sides by 2 , we obtain

$$
\sqrt{a b}+\sqrt{b c}+\sqrt{c d}+\sqrt{d a} \leq a+b+c+d
$$

