Math Challenge 2. Find the exact value of $a>0$ that maximizes the area between the graph of

$$
f(x)=x^{a}\left(1-x^{a}\right)
$$

and the x-axis from $x=0$ to $x=1$. Use some test to verify that you actually have the maximum area.

Solution. The area under the graph of f from $x=0$ to 1 is

$$
A(a)=\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(x^{a}-x^{2 a}\right) d x=\left.\left[\frac{x^{a+1}}{a+1}-\frac{x^{2 a+1}}{2 a+1}\right]\right|_{0} ^{1}=\frac{1}{a+1}-\frac{1}{2 a+1}
$$

Here we find the value of a that maximizes $A(a)$ over the interval $(0, \infty)$.
We compute $\frac{d A}{d a}=-\frac{1}{(a+1)^{2}}+\frac{2}{(2 a+1)^{2}}$ and then solve $\frac{d A}{d a}=0$ for a.

$$
\begin{aligned}
\frac{d A}{d a}=0 & \Leftrightarrow \frac{2}{(2 a+1)^{2}}=\frac{1}{(a+1)^{2}} \\
& \Leftrightarrow 2(a+1)^{2}=(2 a+1)^{2} \\
& \Leftrightarrow 2 a^{2}+4 a+2=4 a^{2}+4 a+1 \\
& \left.\Leftrightarrow 1=2 a^{2} \Leftrightarrow a=\frac{1}{\sqrt{2}} \quad \text { (because } a>0\right)
\end{aligned}
$$

Note that $A(a)$ is continuous and differentiable on $(0, \infty)$ and that $A^{\prime}(a)>0$ when $0<a<1 / \sqrt{2}$ and $A^{\prime}(a)<0$ when $a>1 / \sqrt{2}$. Thus, by the Increasing/Decreasing Test, A is increasing on $(0,1 / \sqrt{2})$ and decreasing on $(1 / \sqrt{2}, \infty)$.

Therefore, $A(a)$ attains its absoulte maximum when $a=1 / \sqrt{2}$.

