Math Challenge 4. A small country has only two coin denominations, $5 \dot{c}$ coins and $7 \grave{c}$ coins. They are proud of the fact that every value greater than 23 can be written as a nonnegative linear combination of these two coin values. For example,

$$
29 \hat{\phi}=2(7 \hat{\phi})+3(5 \hat{c}) .
$$

Prove that every value greater than 23 can be written as a nonnegative linear combination of these two coin values.

Solution. We use mathematical induction on $n \geq 24$ to prove the claim.
(i) $\frac{\text { Basis step: Note that } 24=2(7 \dot{\phi})+2(5 \dot{\phi}) \text {, which means } 24 \text { is a nonnegative linear combination }}{\text { of } 7 \text { and }}$
(ii) Inductive step: Let $k \geq 24$, and suppose that k can be written as a nonnegative linear combination of 7 and 5 . Then $k=r(7 \dot{\phi})+s(5 \dot{\phi})$ for some nonnegative integers r and s. We will show that $k+1$ can also be written as a nonnegative linear combination of 7 and 5 .

Here, we may assume $0 \leq r \leq 4$, because when $r \geq 5$, we may let $r \equiv r_{0}(\bmod 5)$ and rewrite
 $r_{0}(7 \dot{¢})+(7 t+s)(5 \dot{c})$ for some positive integer t. So, we have indeed five cases on r.
(Case 1) $r=0$. Then $k=s(5 \dot{c})$ with $s \geq 5$. But then

$$
k+1=s(5 \dot{¢})+1=s(5 \dot{\xi})+21-20=3(7 \dot{¢})+(s-4)(5 \dot{¢}) .
$$

(Case 2) $r=1$. Then $k=(7 \dot{\xi})+s(5 \dot{¢})$ with $s \geq 4$. But then
(Case 3) $r=2$. Then $k=2(7 \dot{c})+s(5 \dot{c})$ with $s \geq 2$. But then
(Case 4) $r=3$. Then $k=3(7 \boldsymbol{c})+s(5 \dot{c})$ with $s \geq 1$. But then

$$
k+1=3(7 \grave{\zeta})+s(5 \dot{\mathbf{~}})+1=3(7 \mathbf{~})+s(5 \dot{\mathrm{C}})-14+15=1(7 \mathrm{C})+(s+3)(5 \dot{\mathrm{C}}) .
$$

(Case 5) $r=4$. Then $k=4(7 \dot{c})+s(5 \dot{c})$ with $s \geq 0$. But then

In each case, $k+1$ is a nonnegative linear combination of 7 and 5 .
Therefore, by mathematical induction, every value $n \geq 24$ can be written as a nonnegative linear combination of 7 and 5 .

