Math Challenge 7. Without the use of a computer or calculator, solve the following equation for x .

$$
2 \log _{x} e-\log _{e x} e-3 \log _{e^{2} x} e=0
$$

Solution. First, note that the base of a logarithm must be positive and cannot be 1 . Thus, we assume $x>0, x \neq 1, x \neq e^{-1}, x \neq e^{-2}$. Using the change-of-base formula, we may rewrite the given equation as

$$
2 \frac{\ln e}{\ln x}-\frac{\ln e}{\ln (e x)}-3 \frac{\ln e}{\ln \left(e^{2} x\right)}=0
$$

Using the properties of logarithms and that $\ln e=1$, we may further write

$$
\frac{2}{\ln x}-\frac{1}{1+\ln x}-\frac{3}{2+\ln x}=0
$$

Setting $u=\ln x$, we obtain $\frac{2}{u}-\frac{1}{1+u}-\frac{3}{2+u}=0$. Note that all the denominators are nonzero by the above assumption, so we multiply both sides of the equation by $u(1+u)(2+u)$ to obtain

$$
2(1+u)(2+u)-u(2+u)-3 u(1+u)=0 \quad \Leftrightarrow \quad 2 u^{2}-u-4=0
$$

Using the quadratic formula, we have $u=(1 \pm \sqrt{33}) / 4$. Because $u=\ln x$, the solutions are $x=e^{(1+\sqrt{33}) / 4}$ and $x=e^{(1-\sqrt{33}) / 4}$.

