Math Challenge 10. Without the use of a computer or calculator, find the exact value of

$$
\sqrt{1+\frac{1}{1^{2}}+\frac{1}{2^{2}}}+\sqrt{1+\frac{1}{2^{2}}+\frac{1}{3^{2}}}+\ldots+\sqrt{1+\frac{1}{2019^{2}}+\frac{1}{2020^{2}}} .
$$

Solution. Each term in the sum is the square root of the quantity

$$
1+\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}=\frac{n^{2}(n+1)^{2}+(n+1)^{2}+n^{2}}{n^{2}(n+1)^{2}}
$$

Note that the numerator can be manipulated to a perfect square as follows.

$$
\begin{aligned}
n^{2}(n+1)^{2}+(n+1)^{2}+n^{2} & =(n+1)^{2}\left(n^{2}+1\right)+n^{2} \\
& =(n+1)^{2}\left(n^{2}+2 n+1-2 n\right)+n^{2} \\
& =(n+1)^{2}\left((n+1)^{2}-2 n\right)+n^{2} \\
& =(n+1)^{4}-2 n(n+1)^{2}+n^{2} \\
& =\left((n+1)^{2}-n\right)^{2} .
\end{aligned}
$$

Then the sum is equal to

$$
\begin{aligned}
\sum_{n=1}^{2019} \sqrt{1+\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}} & =\sum_{n=1}^{2019} \frac{(n+1)^{2}-n}{n(n+1)}=\sum_{n=1}^{2019}\left(\frac{n+1}{n}-\frac{1}{n+1}\right) \\
& =\sum_{n=1}^{2019} 1+\sum_{n=1}^{2019}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =2019+1-\frac{1}{2020} \quad \text { (the second sum is telescoping) } \\
& =\frac{2019(2021)}{2020}
\end{aligned}
$$

