Math Challenge 12. Let $f(x)=\frac{3^{x}}{3^{x}+\sqrt{3}}$. Without the use of a computer or calculator, find the exact value of the sum

$$
f\left(\frac{1}{2021}\right)+f\left(\frac{2}{2021}\right)+f\left(\frac{3}{2021}\right)+\ldots+f\left(\frac{2020}{2021}\right)
$$

Solution. Let S denote the sum. Write it in both the given order and the reversed order.

$$
\begin{aligned}
& S=f\left(\frac{1}{2021}\right)+f\left(\frac{2}{2021}\right)+\ldots+f\left(\frac{2020}{2021}\right) \\
& S=f\left(\frac{2020}{2021}\right)+f\left(\frac{2019}{2021}\right)+\ldots+f\left(\frac{1}{2021}\right)
\end{aligned}
$$

Adding the corresponding terms by grouping, we obtain

$$
2 S=\left[f\left(\frac{1}{2021}\right)+f\left(\frac{2020}{2021}\right)\right]+\left[f\left(\frac{2}{2021}\right)+f\left(\frac{2019}{2021}\right)\right]+\ldots+\left[f\left(\frac{2020}{2021}\right)+f\left(\frac{1}{2021}\right)\right] .
$$

Note that there are 2020 grouped terms in this sum and each group is a number in the form

$$
\begin{aligned}
f(t)+f(1-t) & =\frac{3^{t}}{3^{t}+\sqrt{3}}+\frac{3^{1-t}}{3^{1-t}+\sqrt{3}} \\
& =\frac{3^{t}\left(3^{1-t}+\sqrt{3}\right)+3^{1-t}\left(3^{t}+\sqrt{3}\right)}{\left(3^{t}+\sqrt{3}\right)\left(3^{1-t}+\sqrt{3}\right)}=\frac{3+3^{t} \sqrt{3}+3+3^{1-t} \sqrt{3}}{3+3^{t} \sqrt{3}+3^{1-t} \sqrt{3}+3}=1
\end{aligned}
$$

Thus, $2 S=2020(1)$ and $S=1010$.

Top Solver(s): Christopher Napier

