Math Challenge 13. The number 4 can be expressed as an ordered sum of two or more positive integers in seven ways:

$$
3+1, \quad 1+3, \quad 2+2
$$

$$
2+1+1, \quad 1+2+1, \quad 1+1+2, \quad 1+1+1+1
$$

In how many ways can 20 be so expressed?
Solution. We use the stars and bars method in which stars represent ones (1), and bars represent plus signs (+) placed between the added numbers. Then the position(s) of bars (+) will show that each of the arrangements above is indeed equivalent to a unique set. Note that when there are 4 stars, there are 3 places that the bars can be put, and we choose a subset of those three places to put our bars, except we never put no bars, so we won't use the empty set.

Sum	Stars-bars Representation	Equivalent Set (Positions of bars)
$3+1$	$\star \star \star \mid \star$	$\{3\}$
$1+3$	$\star \mid \star \star \star$	$\{1\}$
$2+2$	$\star \star \mid \star \star$	$\{2\}$
$2+1+1$	$\star \star\|\star\| \star$	$\{2,3\}$
$1+2+1$	$\star\|\star \star\| \star$	$\{1,3\}$
$1+1+2$	$\star\|\star\| \star \star$	$\{1,2\}$
$1+1+1+1$	$\star\|\star\| \star \mid \star$	$\{1,2,3\}$

When the number in question is 4 , the number of ways to express it as an ordered sum of two or more positive integers is equal to the number of nonempty subsets of $\{1,2,3\}$, namely, $2^{3}-1=7$. (Here, we use the fact that the number of subsets of an n-element subset is 2^{n}.)

Similarly, the number of ways to express 20 as an ordered sum of two or more positive integers is equal to the number of nonempty subsets of $\{1,2,3,4, \ldots, 19\}$, which is $2^{19}-1=524,287$.

